在三角形ABC中,O为中线AM的一个动点,若AM=2则向量OA(OB+OC)的最小值为多少?

在三角形ABC中,O为中线AM的一个动点,若AM=2则向量OA(OB+OC)的最小值为多少?

题目
在三角形ABC中,O为中线AM的一个动点,若AM=2则向量OA(OB+OC)的最小值为多少?
答案
O为中线AM的一个动点,
根据平行四边形法则可知:OB+OC=2OM,
OA•(OB+OC)= OA•2OM=2|OA||OM|cos180°
=-2|OA||OM|
根据基本不等式可得:
|OA||OM|≤((|OA|+|OM|)/2)²=(|AM|/2)²=1,
-2|OA||OM|≥-2,
∴向量OA(OB+OC)的最小值为-2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.