为什么当xn + yn = zn没有正整数解则x^kn + y^kn = z^kn也没有整数解
题目
为什么当xn + yn = zn没有正整数解则x^kn + y^kn = z^kn也没有整数解
答案
设x^kn+y^kn=z^kn有正整数解 x=m,y=n,z=p
m,n,p为正整数,则
正整数组:m^k,n^k,p^k是方程
x^n+y^n=z^n 的解与已知矛盾
所以当xn + yn = zn没有正整数解则x^kn + y^kn = z^kn也没有整数解
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点