设A,B,C为同阶矩阵,且C非奇异,满足C-1AC=B,证明:C-1AmC=Bm(m是正整数) 其中m是幂

设A,B,C为同阶矩阵,且C非奇异,满足C-1AC=B,证明:C-1AmC=Bm(m是正整数) 其中m是幂

题目
设A,B,C为同阶矩阵,且C非奇异,满足C-1AC=B,证明:C-1AmC=Bm(m是正整数) 其中m是幂
答案
好久没有接触过这些东西了,但是基本上是利用逆矩阵关系做了
方程两边,方程左乘以m-1个C-1AC,右乘以m-1个B
那么
(C-1AC)*(C-1AC)...*(C-1AC)=B*B*...*B
而C*C-1=E 于是中间的A累积起来
得到C-1AmC=Bm
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.