M是圆x^2+y^2-4x+2y-4=0上的动点,N是该圆的圆心,连接NM延长只P,使得NM=2MP,求动点P的轨迹方程

M是圆x^2+y^2-4x+2y-4=0上的动点,N是该圆的圆心,连接NM延长只P,使得NM=2MP,求动点P的轨迹方程

题目
M是圆x^2+y^2-4x+2y-4=0上的动点,N是该圆的圆心,连接NM延长只P,使得NM=2MP,求动点P的轨迹方程
速求,
答案
圆的方程可化为(x-2)^2+(y+1)^2=3^2, 易知圆心坐标为(2,-1),NM=3,PM=1.5,PN=4.5. 所以P的轨迹为以N为圆心,PN为半径的圆. 所以其方程为(x-2)^2+(y+1)^2=4.5^2 展开,得:x^2+y^2-4x+2y-15.25=...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.