求极限 lim(n→∞) tan^n (π/4 + 2/n)
题目
求极限 lim(n→∞) tan^n (π/4 + 2/n)
lim(n→∞)tan^n(π/4+2/n)
=lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n
=lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n
=lim(n→∞)(1+tan(2/n))^n/(1-tan(2/n))^n (1)
因为 lim(n→∞)(1+tan(2/n))^n
=lim(n→∞){[1+tan(2/n)]^(1/(tan(2/n))}^[2(tan(2/n)/(2/n)]
=e^2,(2)
lim(n→∞)(1-tan(2/n))^n
=lim(n→∞){[1-tan(2/n)]^(-1/(tan(2/n))}^[-2(tan(2/n)/(2/n)]
=e^(-2),(3)
由(1),(2),(3)得
lim(n→∞)tan^n(π/4+2/n)=e^2/e^(-2)=e^4.
其中第一步就看不懂了:
lim(n→∞)tan^n(π/4+2/n)
=lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n
=lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n
答案
解 lim(n→∞)tan^n(π/4+2/n)
=lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n(着一步就是tan(A+B)拆分的公式啊~
=lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n(着一步就是求出tan(π/4)=1啊
哪里看不明白再追问
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点