若一元二次方程ax2+bx+c=0(a≠0)的系数满足4a-2b+c=0,则这个方程必有一个根是( ) A.1 B.-1 C.2 D.-2
题目
若一元二次方程ax2+bx+c=0(a≠0)的系数满足4a-2b+c=0,则这个方程必有一个根是( )
A. 1
B. -1
C. 2
D. -2
答案
由题意,一元二次方程ax2+bx+c=0(a≠0)的系数满足4a-2b+c=0,
所以,当x=-2时,一元二次方程ax2+bx+c=0即为:a×(-2)2+b×(-2)+c=0,即4a-2b+c=0,
综上可知,方程必有一根为-2.
故选:D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点