已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
题目
已知,在△ABC中,∠B=60°,AD,CE分别平分∠BAC,∠BCA,求证:AC=AE+DC
答案
在AC上取一点F,使得AF=AE,连接OF.下面证明:CF=CD
∵AD是角平分线
∴∠EAO=∠FA0
又AE=AF,AO=AO
∴:△AEO≌△AFO(SAS)
∴∠AOE=∠AOF
又∠B=60°
∴∠BAC+∠BCA=120°
∴∠AOE=∠OAC+∠OCA=(∠BAC+∠BCA)/2=60°
∴∠AOF=∠AOE=60°
∴∠COF==∠AOE=∠COD=180°-60°-60°=60°
∵∠COF=∠COD
又∠OCD=∠OCF,OC=OC
∴△OCD≌△OCF(ASA)
∴CF=CD
∴AC=AF+CF=AE+CD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点