已知an=2n-1,数列{bn}满足:b1/2+b2/2^2+...+bn/2^n=an,求数列{bn}的前n项和Sn
题目
已知an=2n-1,数列{bn}满足:b1/2+b2/2^2+...+bn/2^n=an,求数列{bn}的前n项和Sn
答案
n=1时,b1/2=a1=2×1-1=1
b1=2
n≥2时,
b1/2+b2/2²+...+bn/2ⁿ=an=2n-1 (1)
b1/2+b2/2²+...+b(n-1)/2^(n-1)=a(n-1)=2(n-1)-1=2n-3 (2)
(1)-(2)
bn/2ⁿ=2
bn=2^(n+1)
n=1时,b1=2²=4≠2,数列{bn}的通项公式为
bn=2 n=1
2^(n+1) n≥2
n=1时,S1=b1=2
n≥2时,
Sn=b1+b2+...+bn
=2+2³+...+2^(n+1)
=2+2²+...+2^(n+1) -4
=2×[2^(n+1) -1]/(2-1) -4
=2^(n+2) -6
n=1时,S1=2³-6=8-6=2,同样满足.
综上,得Sn=2^(n+2) -6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点