E,F分别是正方形ABCD的边BC,DC上的点,且∠EAF=45°,试说明EF=BE+DF

E,F分别是正方形ABCD的边BC,DC上的点,且∠EAF=45°,试说明EF=BE+DF

题目
E,F分别是正方形ABCD的边BC,DC上的点,且∠EAF=45°,试说明EF=BE+DF
答案
延长EB到G,使BG=DF,连接AG
∵ABCD是正方形
∴AB=AD ∠BAD=∠ABE=∠D=90°
∴ ∠ABG=∠D=90°
∴△ABG ≌△ADF
∴AG=AF ∠BAG=∠DAF
∵∠EAF=45°
∴ ∠BAE+∠DAF=90°-∠EAF=45°
∴ ∠BAE+∠BAG=45°
∴ ∠EAG=∠EAF
∵AE=AE AG=AF
∴△AEG ≌△AEF
∴EG=EF
∵EG=BE+BG=BE+DF
∴EF=BE+DF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.