{an}中,a1=1/2,an+1=nan/(n+1)(nan+1),n∈正整数,设bn=1/nan,求证(1){bn}是等差数列(2)Sn的表达式

{an}中,a1=1/2,an+1=nan/(n+1)(nan+1),n∈正整数,设bn=1/nan,求证(1){bn}是等差数列(2)Sn的表达式

题目
{an}中,a1=1/2,an+1=nan/(n+1)(nan+1),n∈正整数,设bn=1/nan,求证(1){bn}是等差数列(2)Sn的表达式
答案
(1)a(n+1)=nan/(n+1)(nan+1),
移项,(n+1)a(n+1)=nan/(nan+1)
两边取倒数,1/(n+1)a(n+1)=1+1/nan
bn=1/nan,所以b(n+1)-bn=1,b1=1/(1/2)=2
即bn=1+n,为等差数列
(2)
an=1/n(n+1)=1/n -1/(n+1)
Sn=1-1/2+1/2-1/3……-1/(n+1)
=1-1/(n+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.