椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,

椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,

题目
椭圆x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点为F1﹙-c,0﹚,F2﹙c,0﹚,
M是椭圆上的一点,满足向量F1M×向量F2M=0,求离心率的取值范围
答案
即角F1MF2是直角
因为当M是短轴顶点时,角F1MF2最大
设短轴顶点是B
则角F1BF2>90度
则角F1BO>45度
sin角F1BO=F1O/F1B
因为F1O=c,OB=b
所以F1B=√(c²+b²)=a
所以e=c/a=sin角F1BO
角F1BO>45度
所以√2/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.