如图,P是∠AOB的平分线OM上任意一点,PE⊥OA于站E,PF⊥OB于F,连接EF.求证:OP垂直平分EF.

如图,P是∠AOB的平分线OM上任意一点,PE⊥OA于站E,PF⊥OB于F,连接EF.求证:OP垂直平分EF.

题目
如图,P是∠AOB的平分线OM上任意一点,PE⊥OA于站E,PF⊥OB于F,连接EF.求证:OP垂直平分EF.
答案
证明:∵PE⊥OA于E,DF⊥OB于F,
∴∠PEO=90°=∠PFO,
∴在△PEO和△PFO中,
∠PEO=∠PFO
∠EOP=∠FOP
OP=OP

∴△PEO≌△PFO,
∴PE=PF,EO=FO,
∴O、P在EF的中垂线上,
∴OP垂直平分EF.
由已知易证△PEO≌△PFO,则PE=PF,EO=FO,由线段垂直平分线的性质的逆定理可得OP垂直平分EF.

角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.

此题主要考查角平分线的性质和全等三角形的判定和性质,以及线段垂直平分线的性质的逆定理,难度中等.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.