如图,将三角板PMN的直角顶点P放在正方形ABCD的对角线BD上,绕P点转动三角板,三角板的两直角边PM、PN分别交AB于E,交BC于F

如图,将三角板PMN的直角顶点P放在正方形ABCD的对角线BD上,绕P点转动三角板,三角板的两直角边PM、PN分别交AB于E,交BC于F

题目
如图,将三角板PMN的直角顶点P放在正方形ABCD的对角线BD上,绕P点转动三角板,三角板的两直角边PM、PN分别交AB于E,交BC于F
(1)求证:PE=PF;(第一题做出来了)
(2)线段BE、BF与BP三者之间有何数量关系,用等式表示并说明理由.
答案
(1)PE=PF.
(2)BE+BF=√2BP.
证明:作PG垂直BC于G,PH垂直AB于H.
又BH垂直BG,则四边形PHBG为矩形;
又∠PBG=45°,故BG=PG,BP=√2BG,四边形PHBG为正方形,PG=PH=HB=BG;
又PF=PE(已证),则:Rt⊿PHE≌RtΔPGF(HL),得:EH=FG.
故:BE+BF=(BH-EH)+(BG+FG)=(BG-FG)+(BG+FG)=2BG=√2*(√2BG)=√2BP.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.