对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0),若对任意实数b,函数f(x)恒有两个相异的不动点,则a的
题目
对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0),若对任意实数b,函数f(x)恒有两个相异的不动点,则a的取值范围______.
答案
由题意,f(x)=ax2+(b+1)x+b-1=x有两个不等实根,
∴ax2+bx+b-1=0有两个不等实根,
∴判别式大于0恒成立,即b2-4a(b-1)>0
∴△=(-4a)2-4×4a<0
∴0<a<1,
∴a的取值范围为0<a<1.
故答案为0<a<1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点