线性代数有关矩阵的一个问题

线性代数有关矩阵的一个问题

题目
线性代数有关矩阵的一个问题
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
答案
B的阶数是应该是mxr,否则BC不能乘,
这个题是一个构造题,
对于任意的m×n矩阵A都可以化成标准矩阵型
即存在m阶可逆阵P和n阶可逆阵Q使得A=PVQ,
其中V=Er 0
0 0
Er是r阶单位矩阵,那么V的秩为r
令B为PV,显然B的阶数为mxr,C为VQ,显然C的阶数为r×n
由于P、Q均为可逆矩阵,所以B、C的秩等于V的秩r
那么BC=PV*VQ=PVQ=A
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.