若a>b>0,求a^2+16/b(a-b)的最小值

若a>b>0,求a^2+16/b(a-b)的最小值

题目
若a>b>0,求a^2+16/b(a-b)的最小值
答案
利用不等式的放缩法;实数的性质“p*q ≤ [(p+q)/2]^2”.
a>b>0,即 a>0,a-b>0.
于是 b(a-b)≤[(b+a-b)/2]^2 = a^2/4 (当且仅当 b = a-b = a/2 时取等号),
故 16/b(a-b)≥16/(a^2/4 )= 64/a^2,
则 a^2 + 16/b(a-b)≥a^2 + 64/a^2 ≥ 2* 根号下(a^2*64/a^2)= 16 (当且仅当 a^2 = 64/a^2 即 a=2倍根号2 时取等号).
所以 当 a=2倍根号2,b=根号2 时,a^2 + 16/b(a-b) 取最小值 16.
解毕.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.