证明:自然数中有无数多个质数

证明:自然数中有无数多个质数

题目
证明:自然数中有无数多个质数
答案
反证法:
假设质数有有限多个.最大的一个质数是p.
可以构造出正整数N=2×3×5×……×p+1
显然,N除以2、3、5、……、p都不能整除,有余数1.
那么,N要么是质数,要么包括一个大于p的质数.
这与“最大的一个质数是p”矛盾,
由此可知,不存在最大的质数.
质数有无数多个.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.