在△ABO中向量OA=向量a,向量OB=向量b,M是OB的中点,N是AB的中点,P是ON,AM的中点,则向量AP等于多少?
题目
在△ABO中向量OA=向量a,向量OB=向量b,M是OB的中点,N是AB的中点,P是ON,AM的中点,则向量AP等于多少?
选项:
A 2/3向量a-1/3向量b
B -2/3向量a+1/3向量b
C 1/3向量a-2/3向量b
D -1/3向量a+2/3向量b
1L的大侠,AP=(1/3)(OB-OA+AO),AO=-OA 为什么要加AO呢?
答案
选B
P点是三角形ABO的重心,所以有AP=(2/3)AM
AM=(1/2)(AB+AO)
所以AP=(1/3)(AB+AO)
因为AB=OB-OA
所以AP=(1/3)(OB-OA+AO),AO=-OA
最后得AP=(1/3)(OB-2OA)=(1/3)(b-2a)
以上的量均为向量表示
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点