f(x)=sin(2x-5/6π)+2cos2x化简

f(x)=sin(2x-5/6π)+2cos2x化简

题目
f(x)=sin(2x-5/6π)+2cos2x化简
并求出f(x)的单调增区间
答案
解析:
f(x)=sin(2x-5/6π)+2cos2x
=sin2x*cos(5/6π)- cos2x*sin(5/6π) +2cos2x
=sin2x*[-cos(π/6)] -cos2x*sin(π/6) +2cos2x
=sin2x*(-√3/2) - cos2x*(1/2) +2cos2x
=sin2x*(-√3/2) - cos2x*(3/2)
=-√3*[sin2x*(1/2) +cos2x*(√3/2)]
=-√3*sin(2x+ π/3)
则可知当π/2 + 2kπ≤2x+ π/3≤3π/2 + 2kπ即π/12 + kπ≤2x≤7π/12 + kπ,k属于Z时,正弦型函数y=sin(2x+π/3)是减函数,此时函数f(x)是增函数
所以f(x)的单调增区间是[π/12 + kπ,7π/12 + kπ],k属于Z
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.