以任意三角形三边做等边三角形 证明各等边三角形的中心连线仍为等边三角形

以任意三角形三边做等边三角形 证明各等边三角形的中心连线仍为等边三角形

题目
以任意三角形三边做等边三角形 证明各等边三角形的中心连线仍为等边三角形
现在大一了.额
答案
这是拿破仑三角形.
这个三角形是这样的:● 在任意一个三角形的三条边上分别向外做出三个等边三角形,则这三个等边三角形的中心也构成一个等边三角形.这个由三个等边三角形中心构成的三角形称“外拿破仑三角形”.如图中的△DEF就是△ABC的外拿破仑三角形.● 在任意一个三角形的三条边上分别向内做出三个等边三角形,则这三个等边三角形的中心仍能构成一个等边三角形,这个由三个等边三角形中心构成的三角形称“内拿破仑三角形”.证明 这里提供一种最简单的证明方法,只需初中的水平就可以理解了:证明:如图,分别以△ABC的边BC、AC、AB为等边三角形边长,向△ABC外作等边三角形(△BCC'、△ACA'、△ABB'),设这三个三角形的中心分别为D,E,F,则:∠FAB=∠FBA=∠DBC=∠DCB=∠EAC=∠ECA=30° 以点A为圆心,以AF长为半径作弧;以点E为圆心,以DC长为半径作弧.设两弧在多边形AFBDCE内交于点G.则AG=AF,GE=DC.连接GF、GA、GE,DE、DF、EF.∵△ABF、△BCD、△ACE都是底角为30°的等腰三角形(即∠FAB=∠FBA=∠DBC=∠DCB=∠EAC=∠ECA=30°) ∴△ABF∽△BCD∽△ACE,∴AF/AB = AE/AC = DC/BC 又∵AG=AF,GE=DC ∴AG/AB = AE/AC = GE/BC ∴△AGE∽△ABC ∴∠GAE=∠BAC ∴∠FAG = ∠EAF-∠GAE = ∠EAF-∠BAC = ∠FAB+∠EAC = 60° 又∵AG=AF ∴△AGF为等边三角形 ∴AG=AF,∠AGF=60° ∵△AGE∽△ABC ∴∠AGE=∠ABC 又∵∠FBD = ∠ABC+∠FBA+∠DBC = ∠ABC+60° ∠FGE = ∠AGE+∠AGF = ∠AGE+60° ∴∠FBD=∠FGE ∵在△FBD和△FGE中,FB=FG,∠FBD=∠FGE,BD=GE ∴△FBD≌△FGE(SAS) ∴FD=FE 同理,FD=DE ∵FD=DE=FE ∴△DEF为等边三角形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.