p(x,y)是曲线x^2/25+y^2/16=1上的动点,则(2/5)*x+(3/4)*y的最大值是?

p(x,y)是曲线x^2/25+y^2/16=1上的动点,则(2/5)*x+(3/4)*y的最大值是?

题目
p(x,y)是曲线x^2/25+y^2/16=1上的动点,则(2/5)*x+(3/4)*y的最大值是?
答案
右焦点(3,0),左焦点(-3,0)
设所求点是(m,n)
(m-3)^2+n^2=4[(m+3)^2+n^2]
(m-3)^2-4(m+3)^2=3n^2
(m-3+2m+6)(m-3-2m-6)=3n^2
(m+1)(-m-9)=n^2
代入椭圆
m^2/25+(m+1)(-m-9)/16=1
9m^2+250m+625=0
m=-25,m=-25/9
m=-25,n无解
m=-25/9,n=±8√14/9
所以有两个点
(-25/9,8√14/9),(-25/9,-8√14/9)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.