设A为n阶非零实矩阵,A*=AT,其中A*为A的伴随矩阵.证明:A可逆
题目
设A为n阶非零实矩阵,A*=AT,其中A*为A的伴随矩阵.证明:A可逆
答案
A为非零矩阵 所以A的秩>0
假设A不可逆 则A的秩=r(A)+r(B)-n可知 0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n
=r(A*)-1 从而r(A*)0 从而r(A*)=1 于是r(AT)=r(A)=r(A*)=1 从而n=2 这个时候验证一下就知道不存在这样的A
(2)A的秩 r(A)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点