四个角都相等的四边形为矩形(证明)
题目
四个角都相等的四边形为矩形(证明)
答案
证明:作四边形ABCD
∵∠A+∠B+∠C+∠D=360°(四边形内角和等于360度)
又∵∠A=∠B=∠C=∠D
∴4∠A=360 °(等量代换)
∴∠A=90°
同理,∠B=∠C=∠D=90度
∴四边形ABCD是矩形(矩形的性质)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点