1991个1991依次连写组成一个多位数,求这个多位数被7除的余数.
题目
1991个1991依次连写组成一个多位数,求这个多位数被7除的余数.
答案
多位数被7除的余数=1
分析:
一个1991被7除的余数是3;
二个1991连写被7除的余数是1;
三个1991连写被7除的余数是0(整除).
可见,每三个1991连写为一个周期就能被7整除,而1991个里面共有1991/3=663(余2)个周期,即这个多位数从最后被7整除的那位后面还有2个连写的1991.所以,最后被7除的余数是1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点