如图,已知AD∥BC,CD⊥AD于D点,交BC于C,点E是CD上一点. (1)若AE=BE,∠AEB=90°,求证:AD+BC=CD; (2)若AE,BE分别平分∠BAD和∠ABC,求证:AD+BC=

如图,已知AD∥BC,CD⊥AD于D点,交BC于C,点E是CD上一点. (1)若AE=BE,∠AEB=90°,求证:AD+BC=CD; (2)若AE,BE分别平分∠BAD和∠ABC,求证:AD+BC=

题目
如图,已知AD∥BC,CD⊥AD于D点,交BC于C,点E是CD上一点.

(1)若AE=BE,∠AEB=90°,求证:AD+BC=CD;
(2)若AE,BE分别平分∠BAD和∠ABC,求证:AD+BC=AB.
答案
(1)证明:∵AD∥BC,CD⊥AD于D点,
∴∠D=∠C=90°.
∵∠EAD+∠AED=90°,∠AED+∠BEC=90°,
∴∠EAD=∠BEC.
在△AED和△EBC中,
∠EAD=∠BEC
∠D=∠C
AE=BE

∴△AED≌△EBC(AAS),
∴AD=EC,DE=BC.
∵DE+EC=CD,
∴AD+BC=CD;
(2)证明:如图:作EF⊥AB于F,
∵AE,BE分别平分∠BAD和∠ABC,
∴∠EAD=∠EAF,∠EBF=∠EBC.
又∵EF⊥AB于F,
∴DE=EF=EC.
在Rt△ADE和Rt△AFE中,
AE=AE
ED=EF

∴Rt△ADE≌Rt△AFE(HL),
∴AD=AF.
在Rt△EBF和Rt△EBC中,
EB=EB
EF=EC

∴Rt△EBF≌Rt△EBC(HL),
∴BF=BC.
∵AF+FB=AB,
∴AD+BC=AB.
(1)根据垂线的性质,可得∠D=∠C=90°,根据余角的性质,可得∠EAD=∠BEC,根据全等三角形的判定与性质,可得AD=EC,DE=BC,根据线段的和差,等式的性质,可得答案;
(2)根据角平分线的性质,可得DE=EF=EC,根据HL,可得Rt△ADE≌Rt△AFE,△EBF≌Rt△EBC,根据全等三角形的性质,可得AD与AF的关系,BF与BC的关系,根据线段的和差,可得答案.

全等三角形的判定与性质.

本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,角平分线的性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.