∫∫(D)arctan y/x dxdy.D:1≤x^2+y^2≤4,y≥0,y≤x
题目
∫∫(D)arctan y/x dxdy.D:1≤x^2+y^2≤4,y≥0,y≤x
答案
x=rcosθ
y=rsinθ
∫∫(D)arctan y/x dxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ
其中D':1<=r<=2,0<=θ<=π/4
那么
∫∫(D)arctan y/x dxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ=
∫(0->π/4)∫(1->2)θr dr dθ=
∫(0->π/4) θ/2*r^2|(1->2) dθ=
∫(0->π/4) θ/2*(4-1) dθ=
3/4*θ^2|(0->π/4)=3π^2/64
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点