如图,C是线段AB上一点,△ACD和△BCE都是等边三角形,AE交CD于点M,BD交CE于点N,交AE于点O,求证: (1)∠AOB=120°; (2)CM=CN; (3)MN∥AB.
题目
如图,C是线段AB上一点,△ACD和△BCE都是等边三角形,AE交CD于点M,BD交CE于点N,交AE于点O,求证:
(1)∠AOB=120°;
(2)CM=CN;
(3)MN∥AB.
答案
证明:(1)∵△ACD和△BCE都是等边三角形,
∴AC=CD,CE=CB,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴∠CAM=∠CDN,
∵∠ACD=DAC=∠BCE=∠CBE=60°,∠ACB是一个平角,
∴∠DCE=60°,
∴AD∥CE,DC∥BE,
∵AD∥CE,
∴∠DAM=∠AEC,
∵DC∥BE,
∴∠NDC=∠EBO,
∴∠EBO=∠CAM
∴∠AOB=∠OEB+∠EBO=∠AEC+∠CEB+∠EBO=∠DAE+∠CEB+∠CAM=∠DAC+∠CEB=60°+60°=120°;
(2)在△ACM和△DCN中,
,
∴△ACM≌△DCN(ASA),
∴CM=CN;
(3)∵CM=CN,∠DCE=60°,
∴△MCN为等边三角形,
∴∠MNC=60°,
∴∠MNC=∠ECB=60°,
∴MN∥AB.
(1)根据等边三角形的性质得到AC=CD,CE=CB,∠ACD=∠BCE=60°,则可得到∠ACE=∠DCB,根据全等三角形的判定方法可得到△ACE≌△DCB,于是有∠CAM=∠CDN,由于∠ACD=DAC=∠BCE=∠CBE=60°,可得∠DCE=60°,则AD∥CE,DC∥BE,利用平行线的性质得到∠DAM=∠AEC,∠NDC=∠EBO,得出∠EBO=∠CAM,根据三角形的外角的性质即可求得;
(2)根据全等三角形的判定方法可得到△ACM≌△DCN,则CM=CN;
(3)根据等边三角形的判定方法即可得到△MCN为等边三角形,得出∠MNC=∠ECB=60°,根据内错角相等两直线平行得出MN∥AB.
全等三角形的判定与性质;等边三角形的判定与性质.
此题考查了全等三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- found:a set of keys Are these yours call jenny at 284-5486.换种方法怎么写
- 如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.
- "山古"这个字怎么读
- ε发音及表达含义
- " 坚信自己,往前看!努力过,就不后悔!” 用英语怎么翻译?
- 102×98=( )( )=( )^2-( )^2=
- 言对青山青又青,二人土上说分明,三人骑牛牛无角,草木之中有一人.(打四字,一句词)
- 竹子有哪些特点
- 有两种金属组成的混合物13g,投入足量的稀硫酸中,充分反应后,产生1g氢气,则该金属混合物组成可能是
- correct the mistakes in the short passage if necessary
热门考点