如图,C是线段AB上一点,△ACD和△BCE都是等边三角形,AE交CD于点M,BD交CE于点N,交AE于点O,求证: (1)∠AOB=120°; (2)CM=CN; (3)MN∥AB.
题目
如图,C是线段AB上一点,△ACD和△BCE都是等边三角形,AE交CD于点M,BD交CE于点N,交AE于点O,求证:
(1)∠AOB=120°;
(2)CM=CN;
(3)MN∥AB.
答案
证明:(1)∵△ACD和△BCE都是等边三角形,
∴AC=CD,CE=CB,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴∠CAM=∠CDN,
∵∠ACD=DAC=∠BCE=∠CBE=60°,∠ACB是一个平角,
∴∠DCE=60°,
∴AD∥CE,DC∥BE,
∵AD∥CE,
∴∠DAM=∠AEC,
∵DC∥BE,
∴∠NDC=∠EBO,
∴∠EBO=∠CAM
∴∠AOB=∠OEB+∠EBO=∠AEC+∠CEB+∠EBO=∠DAE+∠CEB+∠CAM=∠DAC+∠CEB=60°+60°=120°;
(2)在△ACM和△DCN中,
,
∴△ACM≌△DCN(ASA),
∴CM=CN;
(3)∵CM=CN,∠DCE=60°,
∴△MCN为等边三角形,
∴∠MNC=60°,
∴∠MNC=∠ECB=60°,
∴MN∥AB.
(1)根据等边三角形的性质得到AC=CD,CE=CB,∠ACD=∠BCE=60°,则可得到∠ACE=∠DCB,根据全等三角形的判定方法可得到△ACE≌△DCB,于是有∠CAM=∠CDN,由于∠ACD=DAC=∠BCE=∠CBE=60°,可得∠DCE=60°,则AD∥CE,DC∥BE,利用平行线的性质得到∠DAM=∠AEC,∠NDC=∠EBO,得出∠EBO=∠CAM,根据三角形的外角的性质即可求得;
(2)根据全等三角形的判定方法可得到△ACM≌△DCN,则CM=CN;
(3)根据等边三角形的判定方法即可得到△MCN为等边三角形,得出∠MNC=∠ECB=60°,根据内错角相等两直线平行得出MN∥AB.
全等三角形的判定与性质;等边三角形的判定与性质.
此题考查了全等三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 如25的x次方=80的y次方=2000求代数式xy-x-y的值
- |1-1/2丨+|1/2-1/3丨+|1/3-1/4|+...+|1/9-1/10|
- 新课标高中数学圆锥曲线题
- While she _____(watch)TV,her son____(play)outside the room.
- 已知集合M={x/x/(x-1)^3≥0},N={y/y=3x^2+1,x∈R}则M交N等于
- 打开窗子,看见青山 改为拟人句
- 萨沙什么意思?
- 已知函数f(x)=log2(x^2+ax-4a),若a=2,求函数f(x)的定义域和值域
- 某道物理题.跳绳求功率什么的.
- 已知{An}是等差数列,其前n项和为Sn,{Bn}是等比数列,且A1+B1=2,A4+Bb4=27,S4-B4=10
热门考点