已知抛物线C:x^2=2py(p>0)上一点A(m,4)到其焦点的距离为17/4
题目
已知抛物线C:x^2=2py(p>0)上一点A(m,4)到其焦点的距离为17/4
(1)求p与m的值
(2)设抛物线C上一点p的横坐标为t(t>0),过p的直线交C于另一点Q,交x轴于M点,过点Q作PQ的垂线交C于另一点N.若MN是C的切线,求t的最小值.
答案
(1)点A在抛物线上,于是 m^2=8p,
抛物线的准线方程为:y=-p/2,
点A到其焦点的距离与到准线的距离相等,故 4+p/2=17/4,
由上面两个式子可得:p=1/2,m=2.
(2)抛物线方程为y=x^2.P点坐标为P(t,t^2),设Q(x1,x1^2)、M(m,0)、N(x2,x2^2),则x1、x2、t两两不同.
由P、Q、M三点共线得,PM、QM、PQ斜率相等:
t^2/(t-m)=x1^2/(x1-m)=(x1^2-t^2)/(x1-t)=x1+t,
所以,
t^2=(t-m)(x1+t) ……①a
x1^2=(x1-m)(x1+t) ……①b
MQ的斜率为x1^2/(x1-m),PQ斜率为(x1^2-t^2)/(x1-t)=x1+t,NQ的斜率为(x1^2-x2^2)/(x1-x2)=x1+x2,由MQ⊥NQ得:
x1^2/(x1-m)*(x1+x2)=-1,
即 x1^3+x1+x1^2*x2=m,……②a
由PQ⊥NQ得:(x1+t)*(x1+x2)=-1,……②b
对抛物线方程y=x^2求导得:y'=2x,
抛物线上N点的切线的斜率为:2*x2,
直线MN的斜率为:x2^2/(x2-m),
由于直线MN与抛物线相切,故 x2^2/(x2-m)=2*x2,即,
x2*(2m-x2)=0,……③
故x2=0或x2=2m.
(I)当x2=0时,由式②b有,(x1+t)*x1=-1,
所以 t=-x1-1/x1,
因为t>0,所以x10,所以x1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点