大一微积分(二阶线性微分方程)

大一微积分(二阶线性微分方程)

题目
大一微积分(二阶线性微分方程)
设 α,β,γ为常数,y=e^2x+(1+x)e^x是微分方程y''+ αy'+βy=γe^x的一个特解,求 α,β,γ.
答案
将特解代入方程
y''=4e^2x+(x+3)e^x
y'=2e^2x+(x+2)e^x
y=e^2x+(x+1)e^x
y''+ αy'+βy=(4+2α+β)e^2x+(x+3)e^x+α(x+2)e^x+β(x+1)e^x=γe^x
=(4+2α+β)e^2x+xe^x(1+α+β)+e^x(3+2α+β)
从而可以得到
4+2α+β=0
1+α+β=0
γ=3+2α+β
从而γ=-1,α=-3,β=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.