抛物线的

抛物线的

题目
抛物线的
已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且AF+BF=8,线段AB的垂直平分线恒过定点(6,0),求此抛物线方程.
答案
答:
① 焦点在x轴上,可设抛物线方程为:y² = 2px.可以判断焦点在(p/2,0)点.
② 设A点坐标(x1,y1),B点坐标(x2,y2),设AB斜率是k,线段AB的垂直平分线斜率是k'
则:kk' = -1,所以:
(y1-y2)/(x1-x2) * [(y1+y2)/2 - 0 ]/[(x1+x2)/2 - 6] = -1
(y1² - y2²) / [x1² - x2² -12(x1 - x2)] = -1
代入y1²=2px1,y2²=2px2,化简:
2p/(x1 + x2 - 12) = -1    
x1 + x2 = 12 - 2p    ---<1> 

AF&sup2;=(x1 - p/2)&sup2; + y1&sup2; = (x1 - p/2)&sup2; + 2px1 = (x1 + p/2)&sup2;
AF = x1 + p/2
同理:
BF = x2 + p/2
AF + BF = x1 + x2 + p ---<2>
<1>link<2>:
12 - 2p + p = 8
p=4
 
综上:
抛物线方程:
y&sup2; = 8x
--完--
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.