设A为3阶非零实矩阵,且A*=-AT,证明:|A|=-1
题目
设A为3阶非零实矩阵,且A*=-AT,证明:|A|=-1
答案
因为A*=-A^T
所以Aij=-aij
因为A为3阶非零实矩阵
所以必有一行元素不全为0
设i行不全为0,按第i行展开
|A|=ai1Ai1+ai2Ai2+ai3Ai3
=-(ai1)²-(ai2)²-(ai3)²
≠0
AA*=|A|E
-AA^T=|A|E
(-1)³|A||A^T|=|A|³
-|A|²=|A|³
|A|²(|A|+1)=0
所以|A|=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点