已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.

已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.

题目
已知:如图,D是△ABC中BC边上一点,E是AD上的一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
答案
证明:∵EB=EC,
∴∠EBD=∠ECD,
又∵∠ABE=∠ACE,
∴∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACE中
AB=AC
EB=EC
AE=AE

∴△ABE≌△ACE,
∴∠BAE=∠CAE.
由EB=EC,根据等腰三角形的性质得到∠EBD=∠ECD,而∠ABE=∠ACE,则∠ABC=∠ACB,根据等腰三角形的判定得AB=AC,有EB=EC,AE为公共边,根据全等三角形的判定易得△ABE≌△ACE,由全等的性质即可得到结论.

全等三角形的判定与性质;等腰三角形的判定与性质.

本题考查了全等三角形的判定与性质:三条边对应相等的两个三角形全等;全等三角形的对应角相等.也考查了等腰三角形的判定与性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.