如图,等腰三角形ABC中,AB=AC,点E、F分别是AB、AC的中点,CE⊥BF于点O.求证 1 四边形EBCF是等腰梯形 2 EF²+BC²=2BE² (图自己画)

如图,等腰三角形ABC中,AB=AC,点E、F分别是AB、AC的中点,CE⊥BF于点O.求证 1 四边形EBCF是等腰梯形 2 EF²+BC²=2BE² (图自己画)

题目
如图,等腰三角形ABC中,AB=AC,点E、F分别是AB、AC的中点,CE⊥BF于点O.求证 1 四边形EBCF是等腰梯形 2 EF²+BC²=2BE² (图自己画)
答案
证明:1
∵AB=AC,且点E、F分别是AB、AC的中点
∴BE=1/2AB=1/2AC=CF
∴EF‖BC
则四边形EBCF为等腰梯形
2
∵CE⊥BF于点O
∴△EOF为直角三角形
又∵四边形EBCF为等腰梯形
∴EO=FO
根据勾股定理
EF^2=EO^2+FO^2=2EO^2
同样在直角三角形EOB中
BE^2=BO^2+EO^2
在直角三角形BOC中
BC^2=CO^2+BO^2=2BO^2
所以EF^2+BC^2=2EO^2+2BO^2
=2(EO^2+BO^2)
=2BE^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.