求证:5^2*3^2n+1*2^n-3^n*6^n+2能被13整除.
题目
求证:5^2*3^2n+1*2^n-3^n*6^n+2能被13整除.
请说明其中的定义,
答案
5^2*3^(2n+1)*2^n-3^n*6^(n+2)=5^2*3^(2n+1)*2^n-3^n*2^(n+2)*3^(n+2)=5^2*3^(2n+1)*2^n-3^(n+n+2)*2^(n+2)=5^2*3^(2n+1)*2^n-3^(2n+1+1)*2^(n+2)=5^2*3^(2n+1)*2^n-3*3^(2n+1)*2^2*2^n=3^(2n+1)*2^n*(5^2-3*2^2)=3^...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点