直线y=2x与圆(x-4)^2+(y-4)^2=4的交点为P,Q,原点为O,则|op|*|oQ|的值为?

直线y=2x与圆(x-4)^2+(y-4)^2=4的交点为P,Q,原点为O,则|op|*|oQ|的值为?

题目
直线y=2x与圆(x-4)^2+(y-4)^2=4的交点为P,Q,原点为O,则|op|*|oQ|的值为?
答案为28
答案
设P,Q的横坐标分别为x1,x2
易知:x1=2,
将y=2x带入(x-4)^2+(y-4)^2=4
整理得:
5x^2-24x+28=0
所以x1+x2=24/5
故x2=14/5
由勾股定理,容易求的|OP|=2√5
|OQ|=14√5/5
所以|OP|*|OQ|=28
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.