在数列{an}中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=_.
题目
在数列{an}中,若对任意的n均有an+an+1+an+2为定值(n∈N*),且a7=2,a9=3,a98=4,则此数列{an}的前100项的和S100=______.
答案
∵在数列{an}中,若对任意的n均有an+an+1+an+2为定值(n∈N*),∴an+3=an.
∵98=3×32+2,∴a98=a2=4,a8=a2=4,
a1+a2+a3=a7+a8+a9=2+3+4=9,
∴S100=33×(a1+a2+a3)+a100
=33×9+2=299.
答案:299.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点