已知f(x)连续,f(0)=0, lim(x趋于0) f(x)/1-cosx=2,则在x=0处,函数f(x)=0,则(A:不可导 B:可导且f(x)=0
题目
已知f(x)连续,f(0)=0, lim(x趋于0) f(x)/1-cosx=2,则在x=0处,函数f(x)=0,则(A:不可导 B:可导且f(x)=0
C:取极小值 D:取极大值 选哪个为什么求详解
答案
x→0,有f(x)→0,1-cosx→0因此,x→0lim[f(x)/1-cosx]是“0/0”型极限,考虑罗比塔法则,对分子、分母分别求导,再取比的极限x→0lim[f’(x)/sinx]=2f’(x)=2sinx f(x)=-2cosx+C,C是常数,又f(0)=0,C=2f(x)=2-2cosx①orf...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点