△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为

△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为

题目
△ABC中,AB=2,BC=4,角B=60°,设O是三角形ABC的内心,若向量AO=pAB+qAC,则p/q的值为
答案
解:AC^2=2^2+4^2-2*2*4*COS60°=12, AC=2√3,
2^2+(2√3)^2=4^2, 所以AB⊥AC
内切圆的半径r=(2+2√3-4)/2=√3-1,

过点O作OE⊥AB,OF⊥AC, AEOF为一个正方形,

AE=AF=√3-1,AE/AB=(√3-1)/2, AF/AC=(√3-1)/2√3
AE=(√3-1)/2*AB, AF=(√3-1)/2√3*AC
向量AO=向量AE+向量AF=(√3-1)/2*向量AB+(√3-1)/2√3*向量AC,

p/q=[(√3-1)/2]/[ (√3-1)/2√3]=√3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.