设矩阵A、B为同阶方阵,且A、B的行列式分别为:|A|=2,|B|=3,则矩阵AB的行列式|AB|=?

设矩阵A、B为同阶方阵,且A、B的行列式分别为:|A|=2,|B|=3,则矩阵AB的行列式|AB|=?

题目
设矩阵A、B为同阶方阵,且A、B的行列式分别为:|A|=2,|B|=3,则矩阵AB的行列式|AB|=?
答案就是6,但是为什么呢?有什么原理?
答案
|AB| = |A| |B| = 2*3 = 6.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.