在边长为1的正方形ABCD的边AB上取一点P,边BC上取一点Q,边CD上取一点M,边AD上取一点N,如果AP+AN+CQ+CM=2,求证:PM⊥QN.

在边长为1的正方形ABCD的边AB上取一点P,边BC上取一点Q,边CD上取一点M,边AD上取一点N,如果AP+AN+CQ+CM=2,求证:PM⊥QN.

题目
在边长为1的正方形ABCD的边AB上取一点P,边BC上取一点Q,边CD上取一点M,边AD上取一点N,如果AP+AN+CQ+CM=2,求证:PM⊥QN.
答案
证明:如图所示,将正方形ABCD绕点A顺时针旋转90°,
则正方形ABCD变到正方形ADC1D1的位置,
其中A不变,B变到D,Q变到Q1,C变到C1,N变到N1,直线QN变到Q1N1
因此QN⊥Q1N1
因为AN=AN1,CQ=C1Q1
所以PN1=AP+AN1=AP+AN=2-(CM+CQ)=CC1-(CM+C1Q1)=MQ1
又PN1∥MQ1
所以四边形PMQ1N1是平行四边形.
故PM∥Q1N1
因此PM⊥QN.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.