D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F. (1)当∠MDN绕点D转动时,求证:DE=DF. (2)若AB=2,求四边形DECF的面积.

D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F. (1)当∠MDN绕点D转动时,求证:DE=DF. (2)若AB=2,求四边形DECF的面积.

题目
D为等腰Rt△ABC斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F.

(1)当∠MDN绕点D转动时,求证:DE=DF.
(2)若AB=2,求四边形DECF的面积.
答案
(1)连CD,如图,
∵D为等腰Rt△ABC斜边AB的中点,
∴CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,
∴∠BCD=45°,∠CDA=90°,
∵DM⊥DN,
∴∠EDF=90°,
∴∠CDE=∠ADF,
在△DCE和△ADF中,
∠DCE=∠DAF
DC=DA
∠CDE=∠ADF

∴△DCE≌△ADF(ASA),
∴DE=DF;
(2)∵△DCE≌△ADF,
∴S△DCE=S△ADF
∴四边形DECF的面积=S△ACD
而AB=2,
∴CD=DA=1,
∴四边形DECF的面积=S△ACD=
1
2
CD•DA=
1
2
(1)连CD,根据等腰直角三角形的性质得到CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,则∠BCD=45°,∠CDA=90°,由DM⊥DN得∠EDF=90°,根据等角的余角相等得到∠CDE=∠ADF,根据全等三角形的判定易得△DCE≌△ADF,即可得到结论;
(2)由△DCE≌△ADF,则S△DCE=S△ADF,于是四边形DECF的面积=S△ACD,由而AB=2可得CD=DA=1,根据三角形的面积公式易求得S△ACD,从而得到四边形DECF的面积.

旋转的性质;全等三角形的判定与性质;等腰直角三角形.

本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等,对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质以及全等三角形的判定与性质.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.