1^2+3^2+5^2+...+99^2)-(2^2+4^2+6^2+...+98^2)

1^2+3^2+5^2+...+99^2)-(2^2+4^2+6^2+...+98^2)

题目
1^2+3^2+5^2+...+99^2)-(2^2+4^2+6^2+...+98^2)
能否在一楼回答上更详细.
答案
(1^2+3^2+5^2+...+99^2)-(2^2+4^2+6^2+...+100^2)
=1^2-2^2+3^2-4^2.+99^2-100^2
=(1+2)(1-2)+(3+4)(3-4).+(99+100)(99-100)
=-3-7-11.-199
这是个等差数列,从0到100共有100项,但1,2是一个3,4是一个
所以有50个项.
解得-(3+199)*50/2
=-5050
(1^2+3^2+5^2+.+99^2)-(2^2+4^2+6^2+.+100^2)
=1^2+3^2+5^2+.+99^2-2^2-4^2-6^2-.-100^2
=1^2-2^2+3^2-4^2+.+99^2-100^2
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)
=-1-2-3-4-...-99-100
=-(1+2+3+4+...+100)
=-(101*50)
=-5050
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.