求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积

求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积

题目
求由曲线Y=e^(-x)及直线y=0之间位于第一象限内的平面图形的面积及此平面图形绕x轴旋转而成的旋转体的体积
答案
不定积分:∫πY²dx=∫π(e^(-x))²dx=∫π*e^(-2x)dx=-π/2*e^(-2x)+C(c为常数)
定积分:【-π/2*e^(-2∞)+C】-【-π/2*e^(-20)+C】=π/2
此平面图形绕x轴旋转而成的旋转体的体积为π/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.