已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}. (1)若A∩B=[1,3],求实数m的值; (2)若p是¬q的充分条件,求实数m的

已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}. (1)若A∩B=[1,3],求实数m的值; (2)若p是¬q的充分条件,求实数m的

题目
已知p:x∈A={x|x2-2x-3≤0,x∈R},q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}.
(1)若A∩B=[1,3],求实数m的值;
(2)若p是¬q的充分条件,求实数m的取值范围.
答案
由已知得:A={x|-1≤x≤3},
B={x|m-3≤x≤m+3}.
(1)∵A∩B=[1,3]
m−3=1
m+3≥3

m=4
m≥0

∴m=4;
(2)∵p是¬q的充分条件,∴A⊆∁RB,
而CRB={x|x<m-3,或x>m+3}
∴m-3>3,或m+3<-1,
∴m>6,或m<-4.
(1)根据一元二次不等式的解法,对A,B集合中的不等式进行因式分解,从而解出集合A,B,再根据A∩B=[1,3],求出实数m的值;
(2)由(1)解出的集合A,B,因为p是¬q的充分条件,所以A⊆CRB,根据子集的定义和补集的定义,列出等式进行求解.

集合关系中的参数取值问题;必要条件、充分条件与充要条件的判断.

此题主要考查集合的定义及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算是高考中的常考内容,要认真掌握.属中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.