无论k取何值时,方程x2-5x+4=k(x-a)的相异实根个数总是2,则a的取值范围是_.
题目
无论k取何值时,方程x2-5x+4=k(x-a)的相异实根个数总是2,则a的取值范围是______.
答案
∵方程x2-5x+4=k(x-a)的相异实根个数总是2,
即方程x2-(5+k)x+ka+4=0的相异实根个数总是2,
∴△=(5+k)2-4(ka+4)=k2+(10-4a)k+9>0,无论k取何值时恒成立,
即△=(10-4a)2-36<0
解得:1<a<4
故a的取值范围是:(1,4)
故答案为:(1,4)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点