一道关于高中数学的等比数列的题

一道关于高中数学的等比数列的题

题目
一道关于高中数学的等比数列的题
数列{a的第n项}的前n项和计为Sn,已知a1=1,a的第(n+1)项=Sn*(n+2)/n
求证:(1)数列{Sn/n}是等比数列
(2)前n+1项之和,即S(n+1)=4*(a的第n项)
答案
因为A(n+1) = (n+2)/n * Sn
所以Sn = n*A(n+1) / (n+2)
S(n-1) = (n-1)*An / (n+1)
所以An = Sn - S(n-1) = n/(n+2) *A(n+1) - (n-1)/(n+1) * An
所以2n/(n+1) * An = n/(n+2) * A(n+1)
即A(n+1)/An = (2n+4)/(n+1)
所以(Sn/n) / (S(n-1)/(n-1)) = ( A(n+1)/(n+2) ) / ( An / (n+1))
= A(n+1)/An * (n+1)/(n+2)
= (2n+4)/(n+1) * (n+1)/(n+2) = 2
所以Sn/n是以2为公比的等比数列
(2)
因为Sn/n是以2为公比的等比数列,首项为S1/1=S1=A1=1
所以Sn/n的通项公式是2^(n-1)
所以Sn = n*2^(n-1)
S(n-1) = (n-1)*2^(n-2)
所以An = Sn - S(n-1) = n*2^(n-1) - (n-1)*2^(n-2)
= n*2^(n-1) - n*2^(n-2) + 2^(n-2)
= n*2^(n-2) + 2^(n-2)
= (n+1) * 2^(n-2)
当n=1时也满足,所以通项公式为An = (n+1) * 2^(n-2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.