已知α∈(-π/2,π/2),β∈(-π/2,π/2),tanα于tanβ是方程x^2+3√3x+4=0的两个实根,看补充.

已知α∈(-π/2,π/2),β∈(-π/2,π/2),tanα于tanβ是方程x^2+3√3x+4=0的两个实根,看补充.

题目
已知α∈(-π/2,π/2),β∈(-π/2,π/2),tanα于tanβ是方程x^2+3√3x+4=0的两个实根,看补充.
已知α∈(-π/2,π/2),β∈(-π/2,π/2),tanα于tanβ是方程x^2+3√3x+4=0的两个实根,求证α+β=-2π/3
答案
∵tanα.tanβ是方程x^2+3√3x+4=0的两个实根,
∴tanα+tanβ=-3√3,tanα·tanβ=4.
∵tan(α+β)
=(tanα+tanβ)/(1-tanα·tanβ)
=-3√3/3=-√3
∵α∈(-π/2,π/2),β∈(-π/2,π/2)
∴α+β∈(-π,π)
∴α+β=2π/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.