三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?

三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?

题目
三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?
答案
证明:∵三边长为2n2+2n,2n+1,2n2+2n+1(n>0),
∴(2n2+2n)2=4n4+8n3+4n2
(2n+1)2=4n2+4n+1,
(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2
故三边长为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.