设a、b、c、d是正实数,且满足abcd=1,

设a、b、c、d是正实数,且满足abcd=1,

题目
设a、b、c、d是正实数,且满足abcd=1,
求证:1/(a+1)^2+1/(b+1)^2+1/(c+1)^2+1/(d+1)^2≥1
答案
先证明对x,y>0,有1/(1+x)^2+1/(1+y)^2>=1/(1+xy)
证:上式等价于(1+xy)(1+y)^2+(1+xy)(1+x)^2>=(1+x)^2(1+y)^2
1+xy^3+x^3y>=2xy+x^2y^2
1+xy(x^2+y^2)>=xy(2+xy)
1+xy(x^2+y^2-2-xy)>=0
1+xy[(x-y)^2-2+xy]>=0
xy(x-y)^2+(1-xy)^2>=0
显然成立.
于是我们证明了1/(1+x)^2+1/(1+y)^2>=1/(1+xy)
对于原不等式用上述不等式有:
1/(1+a)^2+1/(1+b)^2+1/(1+c)^2+1/(1+d)^2>=1/(1+ab)+1/(1+cd)
利用abcd=1,有1/(1+ab)=cd/(1+cd)
所以1/(1+ab)+1/(1+cd)=cd/(1+cd)+1/(1+cd)=1
也即1/(1+a)^2+1/(1+b)^2+1/(1+c)^2+1/(1+d)^2>=1
得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.