已知AB∥CD,探究下列几种情况: (1)如图1,若∠EAF=1/2∠EAB,∠ECF=1/2∠ECD,求证:∠AFC=1/2∠AEC; (2)如图2,若∠EAF=1/3∠EAB,∠ECF=1/3∠E

已知AB∥CD,探究下列几种情况: (1)如图1,若∠EAF=1/2∠EAB,∠ECF=1/2∠ECD,求证:∠AFC=1/2∠AEC; (2)如图2,若∠EAF=1/3∠EAB,∠ECF=1/3∠E

题目
已知AB∥CD,探究下列几种情况:

(1)如图1,若∠EAF=
1
2
答案
(1)如图1,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y°,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∴∠CAE+2x°+∠ACE+2y°=180°,
∴∠CAE+∠ACE=180°-(2x°+2y°),∠FAC+∠FCA=180°-(x°+y°)
∴∠AEC=180°-(∠CAE+∠ACE)
=180°-[180°-(2x°+2y°)]
=2x°+2y°
=2(x°+y°),
∠AFC=180°-(∠FAC+∠FCA)
=180°-[180°-(x°+y°)]
=x°+y°
∴∠AFC=
1
2
∠AEC,
(2)如图2,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∴∠CAE+3x°+∠ACE+3y°=180°,
∴∠CAE+∠ACE=180°-(3x°+3y°),∠FAC+∠FCA=180°-(2x°+2y°)
∴∠AEC=180°-(∠CAE+∠ACE)
=180°-[180°-(3x°+3y°)]
=3x°+3y°
=3(x°+y°),
∠AFC=180°-(∠FAC+∠FCA)
=180°-[180°-(2x°+2y°)]
=2x°+2y°
=2(x°+y°),
∴∠AFC=
2
3
∠AEC,
(3)若∠AFC=
1
n
EAB,∠ECF=
1
n
ECD,则∠AFC与∠AEC的数量关系是:∠AFC=
n−1
n
∠AEC;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.